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Lt
~ This paper examines the cyclotron maser instability for

general magnetic harmonic number transverse electric (TE)

and transverse magnetic (TM) waveguide modes in a conducting

cylinder of radius R .  The analysis is carried out for a

hollow electron beam (radius R
0
) propagating parallel to a

uniform axial magnetic field 
~~~~ 

It Is assumed that

• v/y
0
<K4, where v is Budker’s parameter and y0mc

2 is the

• electron energy in a frame of reference moving with the beam

axial velocity 8b
C

~~~
. One of the most important features

of the analysis is that the instability growth rate for

magnetic harmonic numbers s 2 ,3,... is comparable to the

growth rate of the fundamental (s=l) mode , particularly

2 1/2
for moderate electron energy [

~o
=(1_l/yo) ~0.4]. Moreover,

it is shown that the instability growth rate can be maximized

by appropriate choice of the geometric parameter R0/R
~
.
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I. INTRODUCTION

One of the most basic instabilities that characterizes a hollow

elect’.on beam1 with slow rotational equilibrium is the electron cyclotron

maser instabillty.23 ° In recent experiments,
4’5 the cyclotron maser

instability has been investigated for magnetic harmonic number

s>2 , with particular emphasis on the implications for intense microwave

generation. Previous theoretical analyses of this instability have

been carried out for a non—self—consistent equilibrium slab configuration.
6’8

Strictly speaking, a more accurate theoretical model of microwave

generation by the cyclotron maser instability, includ ing a determination

of the optimum value of the beam radius R0, requires a linear stability

analysis for perturbations about a self—consistent , cylindrical, Vlasov

equilibrium.

This paper develops a self—consistent theory’° of the cyclotron
maser instability for azimuthally symmetric perturbations with

magnetic harmonic number s>l. The present work extends the previous

self—consistent theory1° of the cyclotron maser instability , developed

by the authors for s=l, to higher values of magnetic harmonic number

(s>2). The analysis is carried out within the framework of the Vlasov—

Maxwell equations for an infinitely long electron beam propagating

parallel to a uniform magnetic field B ~ with axial velocity V ~b’~z

We assume that the beam is very tenuous, so that the perturbed field

can be approximated by the vacuum waveguide fields (v/y0
iicl , where v

is Budker ’s parameter). Equilibrium and stability properties are

calculated for the specific choice of equilibrium electron distribution

function in which all electrons have the same value of canonical

angular momentum (P
0
) and the same value of energy (y0

tnc2) in a frame

- 
. L
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of reference moving with axial velocity B
b
C [Eq. (5)]. Equilibrium

properties are examined in Sec. II. An important feature of the analysis

is that the equilibrium distribution function in Eq. (5) corresponds

to a hollow density profile with sharp radial boundaries [Eq . (13)].

- 
The formal stability analysis for aziinuthally symmetric electro-

magnetic perturbations (a/BO O) is carried out in Sec. III. Making

use of the fact that the electron trajectories are circular, the per-

turbed distribution function is calculated for arbitrary magnetic

harmonic numbers [Eqs. (38) and (39)]. Equations (38) and (39),

when combined with Eqs. (16), (22), (23), and (24), constitute one

of the main results of this paper and can be used to investigate

stability properties for a broad range of system parameters. In

this regard, we emphasize that Eqs. (38) and (39) are derived with no

a priori assumption that the electron motion in the beam frame is

much smaller than the speed of light in vacuo , i.e., that 8~~(l—l/y~)<<1.

In Sec. IV , a detailed analytic investigation of the cyclotron

maser instability is carried out for the TE and TM waveguide modes,

assuming ~~<1. Introducing the normalized Doppler shifted eigenfrequency

[Eq. (49)]

x =  
~~b (w_kV b) -su ] 1~W~

the dispersion relation can be expressed as [Eqs. (48) and (51)]

x3_QE x+$~sQ
E / (2s+l) ~O, TE mode,

x~ —Q~~x
2
~~~/5~~ , TM mode ,

2 1/2where 
~~~~~~~~~ 

, w e B 0/y 0mc is the electron cyclotron frequency

in a frame of reference moving with axial velocity $
b

C
~~~

, k is the axial
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wavernunber , w is the complex eigenfrequ ency, QE (Q~~
) is the coupling

coe fficient for the TE ( TM) mode [Eqs . (50) and (52) ] ,  and s=l , 2 , 3...
denotes the magnetic harmonic number. Evidently, for given s which

satisfies a <a for the TE mode and a <B for the TM mode , thesi On si On
maximum growth rate occurs at a value of R0/R given by [Eq. (53))

a /a , TE mode
R
0/R = 

sl On
C ct

51/B 0 ,  TM mode

where a is the first zero of J’(y)=O, and a and B are the nthsi s 
- 

On On

zeroes of J1(y)=O and J0 (y)~ O , respectively.

A detailed numerical analysis of the dispersion relations in Eqs.

(48) and (51) is presented in Sec. V, where stability properties are

investigated for a broad range of system parameters. It is found

that the growth rate of perturbations with s>2 increases rapidly

when the value of B0 is increased . We therefore conclude, for moderate

or high values of B0, that magnetic harmonic perturbations with s)2

are also important unstable modes for intense microwave generation by

the cyclotron maser instability.

Finally, we note that Eqs. (53) and (30) can be combined to determine

the conditions for maximum growth rate and hence optimum conditions

for intense microwave generation by the cyclotron maser instability .

In particular, the microwave frequency W
~~

SW
c
Y
b 

produced by the electron

beam can be tuned by the matching condition R
~~
a0~

c/sw
~ 

in Eq. (30).

Moreover, selecting R0
/R= a

1/a0 maximizes the growth rate of the TE

mode perturbation with magnetic harmonic number s (Sec. IV and V).
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II. EQUILIBRIU M PROPERTIES AND BASIC ASSUMP TIONS

As illustrated in Fig. 1, the equilibrium configuration consists

of a slowly rotating hollow electron beam that propagates parallel to

a uniform applied magnetic field B0~5 with mean axial velocity Bbc~Z
.

The mean radius of the electron beam is denoted by R0 and a grounded

cylindrical conducting wall is located at radius r R .  The applied

magnetic field provides radial confinement of the electrons, and the

radial thickness of the electron beam is denoted by 2a. As shown in

Fig. 1, we introduce a cylindrical polar coordinate system (r,e ,z)

with the z—axis coinciding with the axis of symmetry ; r is the radial

distance from the z—axis , and 0 is the polar angle in a plane perpendicular

to the z—axis.

The following are the main assumptions pertaining to the present

analysis :

(a) Equilib rium properties are independent of z (~ /~ z= 0) and

azimuthally symmetric (~/a0=0) about the z—axis.

(b) The mean canonical angular momentum of the electrons is

negative, which corresponds to a slow rotational equilibrium)’
10

(c) It is further assumed that

(1)

2 2where v=N e /mc is Budker s parameter ,

N =2v J C dr r n°(r) (2)e e

is the number of electrons per unit axial length , n°(r) is the

equilibrium electron density , c is the speed of l ight  in vacuo ,

—e and in are the charge and rest mass , respectively, of an electron ,
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and y
0
mc
2 
is the electron energy in a frame of reference moving with

the mean axial velocity Vb~z 
of the electron beam . The inequality

in Eq. (1) indicates that the beam is very tenuous, so that the

perturbed fields can be approximated by the vacuum waveguide fields. 
10

Consistent with the low—density assumption in Eq. (1), we also neglect

the influence of the small equilibrium self—electric and self—magnetic

fields that are produced by the lack of equilibrium charge and current

neutralization.

For azimuthally symmetric equilibria with 3/aO=0=’a/az , there are

three single—particle constants of the motion . These are the total

energy H,

2 2 4  2 2 1 / 2H ymc =( m c +c 
~~ 

) , (3)

the canonical angular momentum P0,

P0=r [p 0—(e / 2c) rB0] , (4)

and the axial canonical momentum P p .  In Eqs. (3) and (4) ,  lower

case denotes mechanical momentum and the equilibrium se l f—fie lds

have been neglected in compa r ison with the ex ternal magnetic field

Bo~~ 
[see E q. (1)]. Any distribution function that is a function

only of the single—particle constants of the motion satisfies the

steady—state  Vlasov equation (3/ at O) . For present purposes ,

we assume an equilibrium distribution function of the form,
1’10

n R
f °(H ,P 0 ,P

~
) 0 

~~ o(u ) 6(P 0 —P 0) , (5)

2 2where n0 const. is-t he electron density at r R 0, P0=— (e /2c) (R 0—a )B 0=const

is the canonical angular momentum of the electrons ,

TJ=H_ B
bcpz

_y
Olnc 2

/Yb 
(6)
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is an ef fec t ive  energy var iable , Bb=const . is defined by

(Y
~
—l)1”2/Yb , and and 

~b 
are constants. It is straightforward

to show that the axial velocity profile associated with Eq. (5) is

10unif orm over the beam cross section.

Several pertinent equilibrium properties can be deduced for

the class of electron beam equilibria described by Eq. (5). For

this purpose , it is useful to transform the energy variable U

defined in Eq. (6) from momentum variables 
~~r~

l’e~
Pz
) app ropr iate

to the laboratory frame to momentum variables (p ,p~ ,p~) appropriate

to a frame of reference moving with velocity BbcQz , where is a

unit vector in the z—directiorL. The relevant transformation”1°

is given by

~r 1’r ’ ~O~~~O ’ PZ Yb (P Z Ym B b ) , T 
~
‘b +8bp /mc) , (7)

and

1 , 2
U — (y —y,~,)mc , (8)

where ‘r.’(l+~
2
/m
2c2)1”2 and ~

t =(l+~
t
~/~

2
C
2
)L’2. After some straight-

forward algebra, we find

0 3 nO
RO

(Y +Bbp /mc) 2 2 3
2irmy

0y’ 
Z 

— tS(y’mc —y0inc )6(P~—P0
)d p ’,

(9)

where d3P=d prdp 0dp z and d
3p ’=dp dp~dp~. It is evident from Eq. (9)

that y0nic2 can be ident if ied with th e total elect ron ener gy in

a frame of reference moving with axial velocity Bbc.

The energy var iable y ’mc 2 in Eq. (9) can be expressed as

‘mc 2 ’c (m
2c2+m2~ 2g2+p~ 2) h/2  (10)

where use has been mad e of P 0 P0, g is defined by
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R 2g( r ) = —p- [p+(p +a2)/ 2R
0

] , (11)

w =eB0/mc is the nonrelativistic electron cyclotron frequency,

and pj 2=p ;2
~i.p i 2 . In Eq. (11) p is defined by

p =r— R
0 
. (12)

Substituting Eq. (11) into Eq. (9), and representing

~2i~ ~co

J d ~‘J d~~J 
daj dp~p~

—
~~ 0 0

it is straightforward to show that the electron density can be

expressed as

n0
(r)=fd

3pf 0 (H ,P0, P )  = a
0 

—
~~~~ •(a

2
—p 2) , (13)

where

a= (yg_l)1”2c/&~ (14)

is the half—thickness of the beam , and •(x) is the }leaviside step

funct ion defined by

( 0 , x<O ,

t l , x>O .

The self—consistent electron density profile is illustrated in FIg. 2.

Evidently, the electron beam equilibrium described by i~q. (5) has

sharp radial boundaries. Additional equilibrium properties associated

with the distr ibution function in Eq. (5) are discussed in Refs. 1

and 10.
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III. LINEARIZED VLASOV-MA XWELL EQUATIONS FOR TENUOUS BEAM

In this section, we make use of the linearized Vlasov—Maxwell

equations to investigate stability properties for azirnuthally symmetric

perturbations (a/~0O) about a tenuous, hollow—beam equilibrium

described by Eq. (5). We adopt a normal—mode approach in which all

perturbations are assumed to vary with time and z according to

P(~ ,t)=~ (r)exp{i(kz—ut)}

where Imu>0. Here w is the complex eigenfrequency and k is the axial

wavenumber. The Maxwell equations for the perturbed electric and magnetic

field amplitudes can be expressed as

!~! ~(x)

( 15)

= ~ (~~ -i ~

where

(16)

is the perturbed current density. In Eq. (16),

0 v’x~(~ ’)~ 
~ 0

~~~~~~~~~ 
dTexP{_iwT}{~~~

1) + 
~~~ ~e 

(17)

is the pe rturbed dis tr ibut ion function , r=t ’—t , and the pa r ticle

t r aj ector ies ~~‘( t ’) and ~ ‘(t ’) sat isfy d~~’/dt ’=>~’ and d~~’/dt ’=—e~ ’xB~~ 5/c ,

with “init ial” condi t ions ~ ‘(t ’ t) .~~ and

In the tenuous beam limit consistent with Eq. (1) , the per turbed

fields can be approximated by the v~cuutn waveguide fields)0

In this contex t , the presen t stability analysis util izes the vacuum

transverse electric (TE) and transverse magnetic (TM) vaveguide modes
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as a convenient basis to represent a general electromagnetic field

perturbation within a cylindrical waveguide. Making use of Eq. (15)

and neglecting the perturbed current density, the vacuum waveguide modes

can be expressed as

Bz
(r)=J

0
(a on

r/R
c
)=_i (c/wr) [

~
(rE

0
)/
~
r]=i [

~
(rB

r)/~
r1/kr , (18)

for the TE mode and

E (r)=J
0(B0 r/R )=i (c/wr) ~~~~~~~~~~~~~~~~~~~~~~~~ , (19)

for the TM mode. In Eqs. (18) and (19), J~ (x) is the Bessel function

of first kind of order 9~, and a and B are the nth roots of J (a )0On On 1 On

and J
0

(B0 )= O , respectively. Moreover , without loss of generality,

the normalization amplitudes for B
~
(r=O) and E

~
(r=O) have been set

equal to unity in Eqs. (18) and (19). After a simple algebraic

manipulation of Eqs. (15), (18), and (19) , it is straightforward

to show that

2

(
~~ 

- k2 - Ji(a0~
r/R

~
)=_4ir(a

0~
/R
~
c)J

0(r) , 
(20)

c R

for the TE mode and

2 B
2

(
~~ 

- k2 - 

~~
) 
J0(B

0nr/Rc
)=4

~
Tik[Pe

(r)_ (u/kc2)J
z(r)] (21)

c It

for the TN mode. In Eq. (21), the perturbed charge density ~~(r) is

defined by

(22)

Multiplying Eqs. (20) and (21) by r31
(c&0 r /R ) and rJ0(B

0
r / R ) ,

respectively, and integrating from r~O to r—R , we obtain
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/ 2  a2 \ 8ira /Rc tR
— k2 

— On) = — 
On ~ 

2 J C dr r J
1
(a0 r/R )J (r) (23)

\c R / [R J (cz ) ]  0 0
c c 2  On

for the TE mode and

- 

(
~~ 

- k2 
- ) [R ) ] 2 

dr r Jo(Bo r/R )f~ (r) - 

~~~~~~~ 

Jz (r ) ]
C C (24)

for the TM mode. For present purposes it is also assumed that

~ 1 !~~~~ b
_5a

c~~
f
b 

<<W
ch’
~
’b 

(25)

where 
~s~~

_k\T
b
_5W

c/Y b 
is the Dopp ler sh if ted freq uency , w =eB

0
/y
0

mc

is the electron cyclotron frequency in a f rame of ref erence mov ing

with axial veloci ty Vb , and s=1 ,2,3... denotes the magnetic harmonic

number.

To lowest order , the eigenf requency  w and axial wavenumber k

are obtained from the simul taneous solu tion of the vacuum waveguide

mode dispersion relation ,

2 2 cz~~/R~ , TE mode

c BOn /R , TM mode

and the condi t ion for cyclo tron resonance

w~
kVb+Su /y b . (27)

Moreover , to maximize the growth rate and efficiency of microwave

generating ft is required that the group velocity of the vacuum

waveguide mode in Eq. (26) be approximately equal to the beam

10velocity, i .e . ,

2du kc 
- 28g dk u - 

b
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Solving Eqs. (27) and (28) for the characteristic frequency and axial wave—

number (w ,k)=(w0,k0), we find (Fig. 3)

w
O
sui

b
(29)

k
O
=sw YbBb

/c

where y
b
r (1_B

b)
’12. For niaxiim..m growth, it is also required tha t

(w0, k0) solve Eq. (26) in leading order.  Therefore , for maximum

grow th , we find that R should satisfy

(a c/sw , TE mode
R ~ On c (30)
C 

~ 
B0~

c/ sw
~ , TN mode

for intense microwave generation at frequency W
~

SW
cYb~ 

Because of the

discrete nature of a0 ,  B0~~ 
and s, we also conclude that the stability

analysis can be carried out separately for the TE and TM modes.

The perturbed distribution function is calculated for the case of

a self—consistent Vla~ov equilibrium in which all electrons have the

same canonical angular momentum and the same total energy in a frame of

reference moving with axial velocity V
b~z 

[Eqs. (5) and (9)]. To

simplify the ri ght—hand side of Eq. (17), we make use of Eqs. (4)

and (6), and the identities 
~

U/
~~

=
~
_V
b~z 

and aP9/a p0=r~0, where

is a unit vector in the 0—direction. The TE mode portion of the

perturbed distribution function can then be expressed as1°

0 kV
dTexp{i [(kp /ym)-w]T} 

{(l 
- 

_-_
~
) E0(r’)v~ j -

~j~

0 (31)

+r ’ [(l
_ -~~~)~~~ (r ’) _ _ -

~~B ( r t ) )  ~~~~~

which is required to calculate the perturbed azimutiiil current

density .30 (r) in Eq. (23) . Similarly, the TM portion of the perturbed
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10dist ribution function is given by

3f ° 0
~

M (r~~ )=e 
~~~ J dTexp{i[(kpz

/ym)_w]T){[
~r

(r t)_B
b~O (r

’)]v
(32)

+ E (  )[(p/vin) Vb
])

which is required to calculate the perturbed charge and axial current

densities in Eq. ( 24).  In obtaining Eqs. (31) and (32),  use has been

made of the axial orbit

z’=z+(p
~
/-yrn)(t’_t)

The transverse (radial and azimuthal) motion of a typical electron

is illustrated in Fig. 4. (The dotted circle is the electron orbit

in a plane perpendicular to the z—axis.) The radial distance of the

electron from thc z- axis at titn~ s t ’=t and t ’=t ’ are denoted by r and

r’, respectively. The point C Is the gyrocenter 3f the elect ron

trajectory. The angular coordinates ~ and •‘ are the perpendicular

velocity—space polar angles at times t’=t and t’ t’, and are related by

The transverse velocities at times t ’=t and t ’=t ’ are denoted ,

r espectively, by 
~T and ~~ , and th e cor responding speeds ar e de f in ed by

vT (vr+v O ) and

To simplif y th e pr esen t analysis , we also assume that

v/y 0<<(B 0wcR I c )
2 , (33)

- where B0~ (l—1/ y~)
1”2 . Equation (33) is easily satisfied in parameter

regimes of experimental interest.2 5  W ithin the context of Eq. (33),

it is val id for s<3 to neglect the terms proportional to af~/aP0 
in
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Eq. ( 31) , since the corrections associated with these terms are of order

(v/ y
0
)(c/B0

w R ) 2 (<<1) or smaller. Substituting Eq. (18) into

Eq. (31), we find that the perturbed TE mode distribution function

can be approximated by

leR p ~f ° 0
= 
a0~~ 

(w_kV
b) ~~ 

-
~j~ f dTexp{i[(kp

~
/ym)_w]T}

— 
(34)

xs jn(c~~—0’)J1
(a
0

r ’/R )

2 2 1/2 , ,
where p

T
ymv

T
(p +pO) , and use has been made of vO=vTsin(4 —0 ).

Making use of Eq. (28) and substituting Eq. (19) into Eq. (32), we

obtain

0
f
~
(r,

~
)=e[(pZf-~

m)_Vb] 
-

~~

-

~ J dTexp{i[(kp /ym)-w1i}J0~
’50

r ’/R )

(35)

for the perturbed TM mode distribution function.

The Bessel function summation theorem for the triangle OAB

11in Fig. 4 can be expressed as

exp{ii(0 ’_ 0) }J
~

(a0~
r h / R

~
) 

~ 
J

~+s ,(a 0n r/R c)J s ,(a 0n A/R c)
s — — ~ (36)

xexp{is’(~+e_~
_
~~.t/2y)}

Similarly, for the triangle ABC, we can represent

exp {1 
~~ ~~c

T 3 s t~~ on
)
~~ c

)

(37)
faOnpT\ /a O pT\

~ ~s+s~~~~~T) ~s k n~ R ) exp{ 
isw T/y)

C C  C C

where s~l ,2,3... denotes the magnetic harmonic number . Making use of

Eqs. (28) , (36) , and (37) , and carrying out the time integration
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in Eq. ( 34), it is straightforward to show, for a given harmonic

component s, that the perturbed TE mode distribution function can be approx-

imated by
,a p~~ ,a p

~‘ 0n T’~ ~ 
O n T

eR (w_kV
b)pT 

3
~e 

s—1\m~~R I  s+1 \m ~~R
fes (t~ 1~) 

= 
a0 c 2Yb

in ~Ir y’(w_kV
b
)_s

~ C
/yb 

—

(38)

x~ (j)
5

J , (c*0 r/R )J~~~, exp{is’ (o— ~)) ~

where use has been made of the Lorentz transformation in Eq. (7).

In obtaining Eq. (38), we have neg lected thc mod e coup ling between

different values of s, which is consistent with Eq. (25). In a

similar manner, the perturbed TM mode distribution function for harmonic

component s can be approximated by

ie p ’(3f°/~U) 
,~ _____= 

Y’(w_kVb
)_s

~C
/Yb ~

s ~~~~~
(39)

8O~~Tx~~(i)
5 
35

, ( B 0~r/R~)J
5÷5, (

~~~
R
~
) exp{is’(0—4i)}

Equations (38) and (39), when combined with Eqs. (16), (22),

(23) , and (24),  constitute one of the main results of this paper

and can be used to investigate stability properties for a broad range

of system parameters. In this regard , we emphasize that Eqs. (38)

and (39) have been derived with no a priori assumption that

or that a<<R
0
. However, in the limiting case where B~ <<l, Eqs. (38)

and (39) can be simplified considerably (Sec. IV).
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IV. CYCLOTRON MASER INSTABILITY FOR

In this section, simplified expressions are obtained for the

perturbed distribution function in Eqs. (38) and (39), and the

results are used to derive the dispersion relation for several different

values of magnetic harmonic numbers. The present analysis assumes

that the electron motion in a frame of reference moving with axial

velocity Bbc is muc h smaller than speed of light in vacuo, i.e., that

2 2 -

B0=l—l/y 0<<1 . (40)

Equation (40) can be used to truncate the summations over s’ in

Eqs. (38) and (39), keeping only leading terms of order B~.

Defining Q~ and ~~~~ to be the coupling coefficients between the

vacuum TE and TM waveguide modes and the cyclotron r esonance mode

w=kVb+sw c/y b, it is found that ~~~~~~~~~ [see Eqs. (50) and (52)].
In this context (8~ << l), the instability growth rate is largest

for the TE mode.

The pertu rbed distribution function in Eqs. (38) and (39) can

be fur ther  simplified by making use of the symmetry properties of

the equilibrium distribution function f°(u,P0
). Since the variable

U is an even fu nction of p [E q. (8)] ,  it follows from Eqs. (16)

and (22) that any term in Eqs. (38) and (39) that is an odd function

~~ ~r will g ive zero when the integration over is carried out.

Therefore , when evaluating 
~~~~~~~~~ 

we simply omit terms proportional

to odd functions of p .  To evaluate the momentum integral in Eqs . (16)

and (22) , use is made of Eq. (10). After some straightforward algebra,

we find
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af°/aU n0R0 ~J d
3p 1 e 

_ _ _ __ _ _ _ _ _ _ _ _ _ _  - 

2 
~~~~ 

[( 1 + ~(p-a)y Y ’ (W_kV
b

)_ 5
~ c/Y b y int~ r sO c

- + (1 - 
~

) ~(~+a)J - 

8o~~~~~ b~ 2 2
2 2 • (a —p )~0 a~~ 5

p2 
~f °/aU , 2

I 
d 3p —i e 

— J j ’~3p t ~ e
~
‘ 
y’(w_kV

b
)_s&C/Yb 

‘rb 
y y’(w_kVb

)_s
~c

/yb

= — 

n
0R0

m 
f i  

B~ (a
2_ g2)(w_kV)~~ 

•(a
2—p2)2 2  )s 2a c2

S

p4 3f °/~ U 
1a~~ ’I 

d 3p r e 
________ _________________

y y ’(w_kV
b)

_si
~C
/y
b 

= 

~b ~ 
y y ’ (w_kV

b
)_ s

~ c/y b
(41)23n R in w

00 c 2 2 1 _____________

3~2 

— 

B~ (w_kV~) ( l_ g 2 /a )
~ 2 2

= — 

2y0r (a —g 
4Q2 •(a —p )

S

where the Doppler shifted frequency ~ is defined in Eq. (25) , and
S

g(r)  is ‘1efined in Eq. (11) .

We first investigate stability properties for the TE mode pertur-

bation with fundamental magnetic harmonic number (s l). Y rom Eq. (38),

the perturbed distribution function is approximated by

eR w—kV pb J ( a  r/R ) (42)— 

a c  2y in 1 On c y (w—kV )—
~ /yOn b b c b

where pØ
..p
~sin(+_0)=m~~g. The perturbed azimuthal current density

is evaluated by substituting Eq. (42) into Eq. (16) and making use

of Eq. (41). After some algebra, we obtain

n e2R R (w-kV )
( 0 0 c b 

~j (a r /R )g 2 
~~

—_
~~
._ 1(i + —

~
-) ~(p— a)J01 r ) — — 2y y ma cr 1 On c a~1 ~ 

R00 b On
(43)

+ (1 - ~
) 6(~+a)J 

o~~~~~ b~ (a 2 -- 2)~- 

2 2 a
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The radial integration on the right—hand side of Eq. (23) can be

ca rr ied out by Taylor expanding the integrand about r R 0, and keeping

leading terms of order p 2=( r— R 0) 2 . The Taylor expansion of the Bessel

functions provides a good approximation when the functions are slowly

varying over the~minor cross section of the beam. The number of

electrons per unit axial length of the beam (Ne) can be determined

by substituting Eq. (13) into Eq. (2), which gives N =4-iian
0R0.

Eliminating n
0 
in favor of N

e 
and carrying out some straightforward

algebraic manipulation, we obtain the s=l TE mode dispersion relation

~ k2 
a~ 

— 
2v IJl

(aOflRO /RC))fw_kVb— — 
R~ 

— 

1O~
’b ~R J 2(a0

) ) (w_kVb_wC/ybc 
2 2 

(44)
BO

(w_kV b)
3(w_kV b

_w
c/yb) 2j

where use has been made of v
~
Nee

2/mc2. The dispersion relation in

Eq. (44) is identical to the result obtained previously by Uhm et al.1°

for s=1.

In a similar manner, we have derived the dispersion relation

for several values of magnetic harmonic number s. The following

equations summarize the main analytic results obtained for

(a) The TM mode dispersion relation for s=l is given by

~
2 

k2 — 

2vB~ Ji(6
o~
Ro/R~

) 2

— — — 

3yy 3 R J
1(80 ) w_kV

b
_w

c
/yb

2 (45)
B0w (w_kVb)

5(w_kV
b
_w
c/Yb)

2

where use has been -made of the recursion formula J~—d(J0J1)/dx—

J0J1
/x’J~.
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(b) The TE mode dispersion relation for s 2  is given by

2 a0~ 
— 

8vB~ J2(ct0
R0

/R)
~~ 

2 w_kV
b— k — 3

~O~b 
R J 2(a~~) w_kV

b
_2w

c
/yb

2 2 (46)

— 

BO
(w_kV

b)

5(w_kV
b
_2w

c/Yb)
2

where use has been made of

J~ —d(J 1J2)/ d x—J 1J2 /x=J~

(c) The TE mode dispersion relation for s=3 is given by

(A) k2 
— 

8lvB~ J3(ct0
R
0

/ R )  2 w_kv
b

2 
— — 

R
2 — 20

~
’0~b 

R J
2(Ct0 ) 

w_kV
b
_3w

c/yb

2 2 (47)
BO
(w_kV

b)
- 

7(w_kVb
_3w

C/yb)
2

where use has been made of

J~=J~—2d (j1
j
2
) /dx—2J

1
J2/x+d

2(J
1
J
3

) /dx2+3 [d(J
1
J
3
) /dx] /x

Substituting Eq. (30) into Eqs. (44), (46), and (47 ) ,  and making

use of w
~
kV
b+sw /yb, we obtain the approximate TE mode dispersion

relation

X
~
_Q
~n

Xs+B~SQ~n
/(2S+1) 0 (48)

for s=1, 2 , 3. In Eq. (48) , the normalized Doppler—shifted eigenfrequency

x8 is de f ined by

x
S
..[y

b
(w_kVb

)_swC]/w
C ‘ 

(49)

and the coupling coefficients between the TE vacuum waveguide mode

and the electron cyclotron resonance mode are defined by
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Q
~~

(R Q/R )=v [Jl (a O RO /R )/ J2 (aO )] 2 /y Oyba~

Q~~(RO/R
).~l6v$~ [J2(aO RO/R )/ J 2(aO ) ] 2/3yOyba~ , (50)

Q
~~

(R O/R ) 9v (3B O) 4 [J 3(a O RO /R )/ J2 (a O ) ] 2 /40y Oyba
~

Similarly , for the s=l TM mode , we obtain

~~~~~~~~~~~~~~~~ , (51)

Mwhere the coupling coefficient 
~ln 

is defined by

~~n O c
j
l O n R

O C
j
l O n

2/3YO~b~~n . (52)

As mentioned at the beginning of this section, it is ~vident

from Eqs. (50) and (52) that the TM mode coupling coefficient

Q~ 
is much less than the TE mode coupling coefficient Q

~~
.

Therefore, we conclude that the TE mode is the dominant unstable pertur-

bation for B~~<<l. However, when the transverse electron motion is

relativistic (B
0
÷1), the TM mode perturbation is equally important.

A careful examination of Eqs. (50) and (52) shows that the coupling

coefficient between the vacuum waveguide mode and ~he electron

cyclotron resonance mode (w=kV b+sw /yb
) is a maximum whenever

J’(cz0 R
0
/R)=O for theTE mode , and J’(B0

R
0
/R)0 for the TM mode.

Here the prime (‘) denotes dJ5(x)/dx. In this context, we find that

the maximum growth rate for magnetic harmonic number s occurs for a

value of R0/R
~ 

given by

a / a  , TE mode ,
R / R  ~~ On (53)
0 C a 1/B 0 , TM mode ,

where a 1 is the first root of J~
(a
81)O. Equation (53) is valid only
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when a <a for the TE mode , and a <~~ for the TM mode. For a >asi On sl On sl On

(TE) or a
1>B0 

(TM) , the maximum growth rate occurs for R0/It =l.

It should also be noted from Eq. (50) that perturbations with higher

magnetic harmonic number become dominant when the transverse electron

speed approaches c (B0-~-1). In the following section , we make use of

Eqs. (48)—(52) to investigate detailed stability properties for a

broad parameter range of experimental interest.
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V. NUMERICAL ANALYSIS OF STABILITY PROPERTIES

The growth rate w~=Imw and real oscillation frequency w =Rew

have been calculated numerically from Eqs. (48) and (51) for a broad

range of system parameters , R0/R , n , s, B0, and Bb. Since the

electron beam is hollow (R0>a) and is located inside a conducting

waveguide of radius R
~ 
(R0

<R
~
_a), the allowable range of RO /R C ~~

restricted to

(sB0/a0n
)<(R

0/Rc
)<l_ sB0

/a0n, TE mode

- (54)

(S80/B0n
)<(R

0/R
)<l_5B

0/B0 1  
TM mode

where use has been made of Eq. (30). Therefore, in Figs. 5—7, the

plots ar e pr esented only fo r values of R0/R satisf y ing Eq. ( 54) .

Shown in Fig . 5 are plots of (a) the normalized growth rate

YbWi/w c and (b) the normalized Dopp ler—shi f ted  real frequency

Re (y bc
~l/w c)= [y b (w r

_kV
b

)_w
c ]/w c ver sus R0/R~ 

obtained from Eq. (48)

(TE mode) for s=l, v=O.OO l , B 0=O. 4 , Bb=O.286 , and several values of n.

Several f eatur es ar e notewor thy f rom Fig. 5. First , the maximum

growth rate decreases as the radial harmonic number n is increased .

As evident from Eqs. (50) and (52) ,  this fea t ur e r epr esents a general

tendency for both TE and TM per turbat ions , fo r all magnetic harmonic

numbers s. Second , the number of zeroes of w i (where the growth rate

vanishes) increases as n is increased . Moreover , the maximum value of

th e growth rate is also a decreas ing funct ion of RO/R C . Third , the plot

of the Doppler—shifted real frequency versus R0/R has the same general

form as the plot of the growth rate versus R0/R
~
. However, the

growth rate is about 1.5 times as large as the Doppler—shifted

real frequency. This feature is a result of the fact that the contribu-
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tion of the second term in Eq. (48) is negligible in comparison with

the third te rm , fo r B0=O .4.  Fourth , the maximum growth rate occurs at

a value of R0/R~ 
correspond ing to the maximum value of the perturbed

azimuthal electric field [Eqs. (18) and (44)].

Shown in Fig. 6 are plots of the normalized growth rate

versus R0/R obtained from Eq. (51) (TM mode) for parameters identical

to Fig. 5. Comparing Fig. 6 with Fig. 5(a), it is evident that the TE

mode is more unstable than the TM mode. For example, for n 1 , the

maximum TE mode growth rate is w~~O.0l43 0/yb, whereas the maximum

TM mode growth rate is w~~ 0.OO55 0/y b 
In this context , we conclude

that the TE mode is a more effective means for exciting microwave

radia tion , at leas t for modes t values of B0. Since the plot of the

Doppler—shifted real frequency has a similar form to the growth rate

curve , it is not shown in Fig. 6 (see Fig. 5).

We now present an example tha t illustra tes cyclotron maser

s tabi l i ty pr oper ties fo r higher magnetic harmonic numbers (s>2) .

Shown in Fig. 7 are plots of the normalized growth rate

ver sus R0/ R obtained from Eq. (48) (TE mode) for (a) s=2 and

(b) s= 3, and parameters otherwise identical to Fig. 5. As evident

from Fig. 7(a), the maximum growth rate for s=2 occurs for R
0
/R =O.78

when n.’l, for R0/R 0.44 when n=2, arid for R0/R 0.3 when n=3. These

values of RO/R C corr espond to R0/R= ci21/cz0~ [see Eq. ( 5 3 )1 .  In Fig.

7(b) (s’~3), the maximum growth rate for n=2 and n=3 also occur at

R0/ R = 0.6 and R0/R =0.4 1, respectively. However , for s=3 and n l ,

the growth r ate assumes a max imum value fo r R0/R O.69 , sin ce cx
31
>a
01

[see Fig. 7(b)]. Evidently, the value of R0/R= a 1/a0 
plays a very

important role in determining optimum system parameters for intense

microwave generation by the cyclotron maser instability.
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Of considerable experimental interest is the stability behavior

for specified n and several values of s. Typical results are shown

in Fig. 8 where (a) the normalized maximum growth rate (Ybwi
/ w )

and (b) the normalized Doppler—shifted real frequency Re(ybc
~
/w )

are plotted versus B0 for n=2 and v=O.OO1. In Fig. 8, we assume Bb=

B0/l.4, and the solid and dashed curves represent the TE and TM

modes , respectively . The range of B
0 
is limited to O.l<$

o
<0.5

since this stability analysis is valid only when (v/y
0

) ( c / R w ) 2<<B~ <<l

[see Eqs. (33) and (40)]. In Fig. 8(b), the real freq uency for the

s=l TE mode is related only for the range of Bo correspond ing to

instability (w
i
>O). For the TE mode perturbation , maximu m grow th

occurs at R /R 0.26 for s=l , at R /R O.44 for s=2, and at R /R =0.6O c  O c  O c
for s=3 , whe reas the TM mode per turbat ion with s=l has a maximum

growth rate at RofR~
=0.33 [see also Figs. 5—7]. Note that the

s=l TE mode perturbation is stabilized by decreasing B0 
to

which corresponds to B0=(4Q~2/3) 1”4 (see Ref. 10). As shown in Fig. 8(a), the

s=1 TE mode perturbation is the most unstable mode for small values

of B0 (B 0<0 .3 , say) . Howeve r , th e growth rate of perturbations with

s>2 increases rapidly when the value of B0 is increased. As an example,

for the (s,n)=(3,2) TE mode, the maximum growth rate increases by a

factor of six when B0 
is increased from 0.2 to 0.5. We therefore

conclude that for moderate or high values of B0, perturbations with

higher magnetic harmonic numbers (s>2) are also important unstable

modes for generating intense microwave radiation . We fu r the r  note

f rom Fig. 8 that  the growth rate of the TM mode is comparable with

that of the TE mode , when B~ approaches unity.
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Finally , we conclude this section by pointing out two important

areas where the present analysis can be extended. First,

as previously shown for s=l, it may also be possible to demonstrate
I..-

analytically for higher magnetic harmonic numbers (s>2) that the reg ion

of k—space correspond ing to instability is very narrow—band with kc
~
wBb

.

Second , the present stability analysis can be extended in a relatively

straightforward manner to magnetic harmonic numbers s>4, and also to

- 
higher values of 60 (Bo

-3-1).
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VI. CONCLUSIONS

In this paper , we have examined the excitation of electromagnetic

waveguide modes by the cyclotron maser instability for magnetic harmonic

number s>l. The analysis was carried cut for a hollow electron

beam propagating parallel to a uniform magnetic field B0~~ , assuming

that the beam is very tenuous [Eq. (1)]. In Sec. II, equilibrium

properties were calculated for the choice of electron distribution

function in which all elec-rons have the same value of canonical angular

2 .momentum 
~~~ 

and same value of energy (y0mc ) in a frame of reference

moving with axial velocity Bb
C [Eq. (5)]. A formal stability analysis

for azimuthally symmetric ~1ectromagnetic perturbation was ~-arried out

in Sec. III. Equations (38) and (39), when combined with Eqs. (16),

(22), (23), and (24), constitute one of the main results of this

paper and can be used to investigate stability proper~ties for a broad

range of system parameters. In Sec. IV, a detailed analytic investigation

of the cyclotron maser instability was carried out for TE and TM

waveguide modes , assuming Bgt (l_l/y~)<<l . The value of the geometric

parameter R
0/R corresponding to maxim um growth rate was determined ,

and a detailed nurnerkal analysis of the dispersion relation was

presented in Sec. V. One of the principal conclusions of this study

is that for moderate or high value of Bo (B~~0.3~ say) magnetic

harmonic perturbations with s>2 have growth rates comparable with the

fundamental (s=l) mode. Moreover, the growth rate of perturbations

with s>2 increases rapidly when the value of is increased.

Finally, we emphasize that Eq. (53) together with Eq. (30),

can be used to calculate conditions for maximum microwave generation

by the cyclotron maser instability. By selecting the value of



27

the applied magnetic field according to Eq. (30) , and choosing RØ/ R =

the TE mod e growt h rate can be maximized for magnetic harmonic

number s, thereby optimizing the microwave power output for radiation

- 
with frequency 0

~
50

c~b
•
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system .

Fig. 2 Electron density profile [Eq. (13)].

Fig. 3 The straight lines u
~

kVb+swc/yb and w=kc/Bb intersect at

(wQ,k0)=(sw y
b
, so yb/c). For the TE mode, the curve

2 2  2 2 2 1/2w ( k c +a0 c /R ) passes through (00, k0) p rovided

a0nC/Rc=SWc. For the TM mode, the curv e w..(k2c2+B~~c
2
/R
2
)hI

f 2

passes through (w0,k0) provided B0n
c/R

c
=S0c~

Fig. 4 Electron orbit in a plane perpendicular to the z—axis .

Fig. 5 Plots of (a) normalized TE mode growth rate

and (b) normalized Doppler shifted real frequency Re(yb~
2l/wC)

[Yb (W r
_kV

b
)_W

c]/Wc 
versus RO/Rc 

[Eq. (48)] for s=l, ~=O.00l ,

80 0.4 , 6b °~
286 and several values of n.

Fig. 6 Plots of normalized TM mode growth rate YbW j/W c 
versus RO/R C

[Eq. (51)] for parameters identical to Fig. 5.

Fig. 7 Plots of normalized TE mode growth rate YbW j/W C 
versus R0/R

[Eq. (48) ] for (a) s=2, and (b) s=3, and parameters

otherwise identical to Fig. 5.

Fig. 8 Plots of (a) normalized maximum growth rate (ybwf/oc)m,

and (b) normalized Doppler shifted real frequency Re(ybc
~
/wC
)

versus 8o’ fo~ n 2 , v=O.OO 1 , 8b 60/l . 4 and several values of

s. The solid and broken curves correspond to the TE and TM

modes , respectively.
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